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Catheter ablation is an important therapeutic option for controlling recurrent ventricular arrhythmias
in patients with heart disease. Although implantable defibrillators are generally first line therapy in this
patient population, a substantial number of patients require additional therapy with either antiarrhythmic
drugs, ablation, or both. Studies of mapping and ablation have produced further insights into pathophysi-
ologic mechanisms of these arrhythmias, which are now well characterized. The majority is due to reentry
through regions of ventricular scar. Methods for identifying scar based on electrogram characteristics now
allow arrhythmogenic areas to be targeted for ablation during stable sinus rhythm, such that ablation is
often an option even when multiple and unstable ventricular tachycardia are present. Ablation failure
can also be due to anatomical obstacles; however, methods for accessing the pericardial space for map-
ping and ablation and technological progress can be expected to further improve its efficacy. (PACE 2008;
31:358–374)
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Introduction
The superiority of implantable cardioverter

defibrillators (ICDs) to medical therapy in prevent-
ing sudden death in patients resuscitated from
a life-threatening arrhythmia and their effective-
ness in terminating many ventricular tachycardias
(VTs) with antitachycardia pacing have fostered
greater use of ICDs for high-risk patients.1–4 How-
ever, several considerations support an important
role for therapies that prevent episodes of VT. ICD
trials for secondary prevention of sudden death ex-
cluded patients with stable VT, and ICDs do not
reduce mortality compared to drug therapy in pa-
tients with relatively preserved ventricular func-
tion.5,6 ICDs do not prevent VT and 39–70% of
patients require additional antiarrhythmic therapy
to reduce the number of arrhythmia episodes.7–9 A
significant number of tachycardia terminations ne-
cessitate shocks which reduce quality of life.10,11

Furthermore, episodes of VT or ventricular fibril-
lation (VF) predict increased mortality and heart
failure even when they are effectively treated by
an ICD.12,13 Therapies that prevent VT can be ex-
pected to improve quality of life for patients with
ICDs. Whether they would translate into improve-
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ments in survival will require further study. An-
tiarrhythmic drug therapy has disappointing effi-
cacy and adverse drug effects that may outweigh
benefits. Catheter ablation also offers the poten-
tial for preventing VT recurrences. Interestingly, in
one series of patients referred for ablation, Della
Bella et al. found that the elimination of all in-
ducible VTs predicted reduced risk of death from
heart failure.14

Guidelines
The recent American College of Cardiology

(ACC)/American Heart Association (AHA)/ Euro-
pean Society of Cardiology (ESC) guidelines state
that radiofrequency catheter ablation (RFCA) is
useful as a palliative and adjunctive therapy to
ICD implantation in patients who receive multi-
ple ICD shocks due to drug refractory sustained
VT (Class I, level of evidence C), in patients with
bundle branch reentry (BBR) (Class I, C), and for
incessant monomorphic VT after failed drug ther-
apy (Class IIa).15

In patients with otherwise low risk of sud-
den cardiac death (SCD) who present with sus-
tained VT (Class I) or nonsustained VT (Class IIa)
for which drug therapy is ineffective or not toler-
ated, ablation is also an accepted therapy. Most of
these patients have idiopathic VT in the absence
of structural heart disease, for which ablation has a
success rate exceeding 85%.16 Ablation strategies
for this entity will not be discussed in this review.

For patients with prior myocardial infarc-
tion (MI), but relatively preserved left ventricu-
lar (LV) ejection fraction (>40%), curative catheter
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ablation may be even considered in lieu of ICD
therapy (Class IIb).

Ablation of ectopic foci that trigger recurrent
polymorphic VT is an acceptable strategy for con-
trolling electrical storm (Class IIb).

This article will review the present methods
and outcomes of catheter ablation of VT for pa-
tients with heart disease.

Monomorphic VTs
The strategy for catheter mapping and ablation

is determined by the type of VT and the underlying
substrate. Repetitive ventricular activation from
the same circuit or focus generates monomorphic
VT. Between 1993 and 2002, most VTs considered
for ablation were drug refractory, monomorphic,
hemodynamically tolerable, and reproducibly in-
ducible. These preconditions render them map-
pable in the electrophysiology laboratory such that
an activation sequence could be defined from point
by point mapping.17–22 The critical regions could
then be targeted for focal ablation.

However, most patients with VT and struc-
tural heart disease have unstable VTs due to hemo-
dynamic intolerance or poor reproducibility.23–25

In addition, multiple morphologies of VT are typ-
ically inducible. These challenges have led to a
shift away from targeting single, mappable VTs to
a substrate-based approach that targets broader re-
gions containing the likely substrate causing VT
without the need for mapping during VT.

Scar-Related Reentrant VT
Reentry involving areas of ventricular scar due

to prior MI is the most common cause of VT in pa-
tients with structural heart disease; most studies
have focused on this patient population.26,27 How-
ever, scars also occur in nonischemic cardiomy-
opathies.

In patients with scar-related VTs, areas of
dense fibrosis and the valve annulae form regions
of conduction block that often define reentry cir-
cuit borders and create intervening isthmuses, also
referred to as channels, of surviving myocardial
bundles.28–30 Fibrosis between the surviving my-
ocyte bundles functionally prolongs the pathway
for impulse propagation creating slow conduction.
In addition, cell-to-cell coupling may be dimin-
ished due to decreased gap junction density and al-
tered connexin expression, contributing to slowed
conduction through the scar and may create re-
gions of functional conduction block.28,31–33

Propagation of excitation wavefronts through
regions of slowed conduction and reentry cir-
cuit isthmuses does not usually contribute to the
surface electrocardiogram (ECG) QRS configura-
tion.30,34 The QRS of the VT begins when the exci-
tation wavefront emerges from the exit of an isth-

mus often located at the border of the scarred my-
ocardium and propagates rapidly away from the
scar to depolarize the remainder of the ventricles
(Figs. 2 and 5). The wavefront may then propagate
along the border of the scar (outer loop) to return
to the entrance of the isthmus, or through a path
within the scar (inner loop). Areas within the scar
may be activated with conduction delay but are
not participating in the specific reentry circuit (by-
stander regions). However, these bystander regions
may content a critical part of a different reentry cir-
cuit. Multiple potential loops create figure of eight
types of circuits (Fig. 5).

Targeting Isthmuses in Stable Scar-Related VTs
Identification of a critical isthmus allows ab-

lation with a small set of radiofrequency (RF) le-
sions.22,23,35 Studies of these isthmuses have gen-
erally included patients with relatively slow VTs.
Protected isthmuses in tolerated postinfarct VTs
have an average length of 31 ± 7 mm (range: 18–
41 mm) and a width of 16 ± 8 mm.30 The range
of 6–26 mm width may explain that an important
number of VTs can be ablated with a small number
of RF lesions. However, broader isthmuses require
linear lesions.

Activation Mapping during VT

The QRS complex begins when the excitation
wavefront emerges from the isthmus rapidly depo-
larizing the remainder of the ventricles producing
systole. Depolarization of the isthmus is presys-
tolic, prior to the QRS onset. Isolated low ampli-
tude, diastolic potentials (IP) separated from adja-
cent larger potentials are observed at 50% of isth-
mus sites and are markers for isthmuses where RF
ablation can terminate VT.35,36 These potentials are
also seen, however, in bystander areas that may be
dead end pathways, or channels that are not partic-
ipating in the VT under evaluation.35,36 Bystanders
with IPs can be recognized by entrainment map-
ping (Fig. 2) or pacing from a remote site to disso-
ciate the IP from the VT.36

IPs can also be far-field activation from depo-
larization of tissue remote from the ablation site
that can also be recognized from entrainment.37 A
significant number of VTs can be interrupted by
ablation at sites that do not have IPs, often at a
reentry circuit exit.

Entrainment Mapping

During entrainment of a reentrant VT, pacing
slightly faster than the VT continuously resets the
reentry circuit (Figs. 1 and 2). At sites in the reen-
try circuit, the postpacing interval (PPI) is equal
to the revolution time through the circuit, which
is the tachycardia cycle length (CL). The PPI in-
creases with increasing conduction time from the
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Figure 1. Methods for assessment of potential errors during entrainment due to the presence
of far-field potentials (FFP) are shown. From the top surface leads (I, II, III, V1, V5), bipolar
intracardiac electrograms recorded from the distal (Epi d) and proximal (Epi p) electrode pairs of
a mapping catheter in the pericardial space, from the distal (Abl D) and proximal (Abl P) electrode
pairs of a mapping catheter on the endocardium, and from catheters placed in the right ventricle
(RV) and coronary sinus (CS). During VT with a cycle length (CL) of 475 ms (QRS complex 4 and
5), two potentials are recorded from the distal (Abl D) and proximal (Abl P) electrode pair marked
with an asterisk and an arrowhead, respectively. Unipolar pacing from the distal electrode of the
ablation catheter at a CL of 460 ms entrains tachycardia with concealed fusion (QRS complex
1–3). The stimulus artifact obscures the smaller potential (arrowhead), indicating that this is
likely the local potential (LP), whereas the larger potential (asterisk) remains visible and separate
from the pacing stimulus, indicating that it is a FFP. The true postpacing interval (PPI) measured
from the stimulus artifact to the LP equals the VT CL of 475 ms. Measuring the interval from
the stimulus artifact to the FFP would result in a false short PPI of 430 ms (arrow). Comparing
the S-QRS intervals to electrogram — QRS interval during entrainment can also be helpful in
assessing whether the site is in the reentry circuit, particularly if the stimulus artifact obscures
signals at the time of interest. The S-QRS (dotted arrow) is 300 ms, which equals the electrogram
to QRS interval measured from the LP to the QRS onset of the fifth beat (dotted arrow). The S-QRS
comparison is useful when fusion is concealed; however, small amounts of fusion can be difficult
to detect. The second beat (QRS n + 1) is from the VT circuit and is not fused. Measurement of
the S-QRS n + 1 is 750 ms. Assessing the relation of this interval to the LP signal (dashed arrow)
reveals that the LP precedes the QRS onset of the n + 1 beat by that interval, consistent with a
reentry circuit site. A remote intracardiac electrogram (e.g., from the right ventricle apex catheter)
can also be used as a reference instead of the QRS.

pacing site to the circuit. Interpretation is based on
three fundamental assumptions. First, pacing does
not alter the circuit path or initiate another VT.
Second, conduction time through the circuit is the
same during entrainment as during the VT. If the
conduction slows during entrainment, the PPI pro-
longs. Third, and a common source of confusion,
is the requirement that the electrogram selected for
measuring the PPI indicates depolarization at the
pacing site. Electrograms with multiple deflections
are commonly recorded in scarred tissue. These
potentials can be local signals from depolarization
of tissue beneath the recording electrode, or far-
field signals from depolarization of tissue adjacent
or remote from the pacing site.37 Far-field signals
are common sources of a PPI that is shorter than
the tachycardia CL (Fig. 1). They can often be rec-
ognized during pacing when they remain visible
and separate from the stimulus artifact during en-

trainment. Local potentials from tissue directly de-
polarized by the pacing stimulus are not visible
during pacing. The stimulus artifact obscures the
potential produced in the tissue immediately af-
ter the stimulus and these potentials reappear after
pacing.37 With some recording systems, the record-
ing amplifier does not recover for a second or more,
obscuring all potentials on the distal electrodes,
preventing measurement of the PPI from the distal
electrode recording. Analyzing the signal from the
proximal recording electrodes, when it is present
on both proximal and distal electrodes, or measur-
ing the n + 1 difference described by Soejima et al.
can overcome this problem. The interval from the
last stimulus that resets VT to the second beat after
the stimulus is compared to the interval between
the local electrogram during VT and the second
beat after that electrogram. The difference between
these two intervals, the n + 1 difference, correlates
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Figure 2. Entrainment mapping — different responses at different sites. Schematic of a scar
related reentry circuit. Grey areas represent scar, (a + c) represents the conduction time through
the isthmus, (b) through the outer loop, (d) through a central bystander, and (e) to a remote
bystander. Pacing is slightly faster as the VT cycle length resets (entrains) the VT reentry circuit.
Pacing at an exit site (1) results in a short stimulus to QRS (S-QRS) interval identical to the
local electrogram to QRS (E-QRS) interval. The paced QRS complex is identical to the VT QRS
complex (concealed fusion) and the PPI approximates the revolution time through the circuit
which is the conduction time through the outer loop (b) and the isthmus (a + c). At a central
isthmus site (2), the S-QRS is prolonged and equals the E-QRS with identical QRS morphology,
resembling the conduction time (a). At an outerloop site (3), the PPI is identical with the VTCL
but the paced QRS complex differs from the VT QRS due to fusion. Pacing at a remote bystander
(4) results in a different paced QRS complex. The PPI is prolonged by the propagation time (e) to
and from the reentry circuit. Pacing at an adjacent bystander (5) results in concealed fusion with
a S-QRS interval that is longer than the E-QRS interval, and a prolonged PPI interval due to the
propagation time (d) to and from the circuit.

well with the difference between PPI and ventric-
ular tachycardia cycle length (VTCL) allowing en-
trainment mapping when the PPI cannot be mea-
sured.38

At reentry circuit isthmus sites, pacing en-
trains VT without changing the ventricular acti-
vation remote from the scar, producing entrain-
ment with concealed fusion (a form of concealed
entrainment) (Figs. 1 and 2). The stimulus to QRS
interval (S-QRS) equals the conduction time from
the pacing site to the reentry circuit exit, and is
short (e.g., < 30% of the tachycardia CL) in the
exit region, and longer at sites proximal to the exit
(Fig. 2). At inner loop sites, the S-QRS may be very
long, exceeding 70% of the VTCL. Outer loop sites

are recognized from a PPI that approximates the
VTCL, but QRS fusion is produced by propagation
of stimulated antidromic wavefronts away from
the scar border (Fig. 2). QRS fusion is often not de-
tected when less than 22% of the QRS duration is
from the antidromic wavefront.39 Therefore, some
outer loop sites are misidentified as exit or inner
loop sites.

In one study, RF ablation with standard 4- or
5-mm electrodes terminated VT after an average of
10 seconds at 29% of 85 reentry circuit sites that
met the combined criteria of entrainment with con-
cealed fusion with a PPI–TCL difference <30 ms
and S-QRS of less than 70% of the VTCL.34 In 48
selected patients with slow VTs (CL491 ± 84 ms),
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the combination of concealed entrainment with a
S-QRS/E-QRS match ≤30 ms reached a sensitivity
of 83% and a specificity of 84% for a successful
ablation site.22,40

Mechanical and Ablation Effects during VT

When catheter position is stable, RF current
application heats ventricular tissue without pro-
ducing propagated depolarizations. Termination
of VT is then a sign that conduction has been
interrupted in the reentry circuit, similar to cry-
omapping during cryoablation. At isthmus sites
identified by entrainment, RF ablation typically
terminates VT within 20 seconds.34

Mechanical trauma from the mapping catheter
that terminates VT without eliciting propagated
response is also an indication that the mapping
catheter is at a reentry circuit isthmus site. When
this occurs, VT may not be inducible for a variable
period of time, preventing further mapping. Ab-
lation at the site can be successful. Bogun et al.
observed catheter-induced termination without
premature beats, or abolishment of inducible VT
during catheter placement at an endocardial site
during mapping of 7 of 62 VTs. RF ablation at the
site abolished targeted VT with no recurrence dur-
ing 15 ± 11 months follow-up.41

Reproducible termination of VT by a pacing
stimulus that does not produce a propagated re-
sponse is also an indication that the pacing site
is in a circuit isthmus. The stimulus likely cap-
tures locally, but the propagated impulse blocks
before exiting the scar region and creates bidirec-
tional conduction block in the reentry circuit.41,42

Alternatively, the stimulus prolongs refractoriness
at the site through an electrotonic effect.43,44 This
finding is specific for predicting a successful abla-
tion site, but is observed infrequently, with a sen-
sitivity of only 16%. Termination of VT by pacing
stimuli without global ventricular capture was ob-
served in 15 of 62 mapped VTs in one study and
RF ablation at the site terminated all 15 VTs.45

Outcomes of Ablation for Stable
VT Due to Infarct Scars

Ablation targeting critical isthmuses for sta-
ble VTs is successful, abolishing the inducible
“targeted” or “clinical” VT in 71–86% of se-
lected patients.14,17–21,36,46 During average follow-
ups ranging from 9 to 41.5 months, 13–46% of
patients experience a recurrence of nonfatal VT;
the risk of SCD is low (0–6%), reflecting common
use of ICDs for patients felt to be at risk. In pa-
tients with failure of ablation or another VT in-
ducible, the 3- to 4-year risk of VT recurrence is
much higher (60–64%) as compared to patients
with no inducible monomorphic VT of any mor-
phology (recurrence 14–20%).14,46

Targeting Unstable Scar-Related VTs
Only 30% of patients referred for treatment of

VT are suitable for ablation guided only by map-
ping during VT. Most have VT that is not tolerated
hemodynamically to allow extensive mapping
during the arrhythmia. VTs can also be unstable
for mapping because of frequent change of mor-
phology or inability to reproducibly induce the
VT. Della Bella et al. found that unstable VTs were
present in 57% of patients referred for catheter ab-
lation.14 In another series of 40 consecutive pa-
tients referred for VT ablation of postinfarct VT,
143 different VTs were inducible (3.6 ± 2.1 VTs
per patient), but only 17.5% of patients had exclu-
sively stable, tolerated VTs; a third of patients had
only unstable VTs and the majority had both stable
and unstable VTs.23

Unstable VTs can be approached using multi-
electrode mapping arrays that sample electrograms
from multiple sites simultaneously during brief
episodes of VT after deployment of the basket or
balloon catheter in the ventricle.47–49 An alterna-
tive approach attempts to identify the substrate
causing the VT from mapping during stable sinus
or paced rhythm (Fig. 4).

Substrate Mapping—Lessons
Learned from Surgery

Subendocardial resection of the arrhythmo-
genic substrate in the borderzone of the infarcted
myocardium, encircling endocardial ventriculo-
tomy, or encircling cryoablation with or without
VT induction is highly effective in treating VT. Of
292 selected patients who underwent surgery for
drug refractory VT, 56 (19.2%) were inducible af-
ter operation and only 6.2% experienced a spon-
taneous VT recurrence during a follow-up of 36
months. The operative mortality ranges from 3%
to 14%.50–55 In the operating room, the surgeon can
identify the region of scar from visual inspection.
Mapping during sinus rhythm (SR) in the operat-
ing room has shown that the areas of late activation
and fractionated electrograms are often present in
the infarct border and are likely involved in caus-
ing VT.56,57 The application of these and other find-
ings to catheter mapping has been facilitated by
the development of mapping systems that enable
electrophysiological information to be displayed
on anatomic reconstructions of the ventricles.

Voltage Maps to Identify Scars

The reduction of myocytes in regions of scar
reduces the amplitude of recorded electrograms,
allowing areas of scar to be recognized from the
peak-to-peak electrogram voltage. In animal mod-
els and humans, infarct regions typically have
bipolar electrogram amplitude <1.5 mV (recorded
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Figure 3. Right anterior oblique (RAO) and left anterior oblique view (LAO) of an electroanatomi-
cal voltage map (CARTO, Biosense Webster, Inc.) of the left ventricle in a patient with a relatively
small apico-septal myocardial infarction. Bipolar electrogram amplitudes are color coded ac-
cording to the color bar. Normal voltage (amplitude: >1.5 mV) areas are displayed in purple.
Although the surface of the infarcted area in this example is only 32 cm2, the circumference is
28.3 cm2. Successful ablation was achieved without completely encircling the scar by targeting
sites (white tags) where pacing resulted in a stimulus to QRS delay of 55 and 99 ms, respectively,
consistent with slow conduction and with a QRS morphology that matched that of VT. RF lesions
(red tags) rendered the VT noninducible.

with a 4-mm tip catheter with a 1-mm interelec-
trode spacing, filtered at 10–400 Hz).24,25,58,59 Ar-
eas of scar or infarction can be shown graphi-
cally in three-dimensional anatomic maps by color
coding the peak-to-peak electrogram amplitude,
referred to as voltage maps. In patients with VT,
these low voltage areas are generally large, rang-
ing in size from 30 to 110 cm2.23–25 Ablation of
the entire area or even its circumference is usu-
ally not practical. Additional criteria are used to
subselect regions of the scar that contain reen-
try circuit exits or isthmuses for ablation (Figs. 3
and 4).

Identifying Exit Regions with Pace-Mapping

Potential exit regions along the border of the
low voltage region can be identified by pace-
mapping. The 12-lead ECG of inducible VTs is
recorded on the electrophysiology (EP) laboratory
recording system. Pacing at sites along the bor-
der of the low voltage scar is performed to iden-
tify regions where the pace-map matches that of
an induced VT (Fig. 3). Marchlinski et al. used

pace-mapping to guide placement of lines of RF
ablation lesions during SR in nine post-MI pa-
tients with a mean of 1.8 unstable VTs. After an
average of 44 RF applications (range: 8–71) over a
mean length of 16.2 cm, inducible VT was abol-
ished in four of nine patients, one was not tested,
and four had other, typically faster inducible VTs.
Only one patient experienced a VT recurrence dur-
ing a mean follow-up of 8.6 months.24 Reddy et al.
abolished all inducible VTs in 7/11 patients using
a saline-irrigated tip catheter.25 Pace-mapping is
not a precise guide to the exit location. In some
patients, a paced QRS complex resembles the VT
QRS over a broad region.60 Therefore, placement
of a line of RF lesions, rather than a focal ablation
is likely to be warranted. It is also important to rec-
ognize that a pace-map that does not resemble VT
does not necessarily indicate that the site is remote
from the reentry circuit.

If the reentry circuit is large, the pacing site
may be distant from the exit. In particular, pacing
at sites near the entrance to a channel may pro-
duce a completely different activation sequence
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Figure 4. Bipolar voltage maps and selected electrogram recordings showing a potential channel
containing late potentials are shown. Bipolar voltage maps of the left ventricle constructed during
RV pacing are shown in a modified AP view (A, C) and a modified LAO view (D, F). In panels
A and D, voltage is color coded with the upper voltage threshold set at a commonly employed
normal value of >1.5 mV, such that the areas exceeding this amplitude are displayed in purple.
The lower amplitude threshold is set for <0.5 mV, such that these areas are red. In panel C,
the upper voltage threshold has been reduced to 0.38 mV and the lower threshold to 0.28 mV.
In panel F, the upper voltage threshold is 0.62 mV and the lower threshold is 0.52 mV. These
changes in panels C and F expose potential channels of relatively greater amplitudes (which
are now purple) between lower amplitude regions or electrically unexcitable scar (grey areas).
Within these channels (dotted arrows) late potentials are recorded after the QRS complexes (right
hand panels). Twelve-lead ECGs during pace-mapping near the exit from these channels (central
panels) demonstrated a good match to VT 1 and VT 2, respectively, as shown.

(and hence QRS morphology) compared to that of
the tachycardia. During pacing at other isthmus
sites, wavefronts also might emerge from the scar
at different locations than the exit, producing a dif-
ferent QRS morphology than during VT.

Recognizing Channels and Slow Conduction
from Electrograms and Pace-mapping

During pace-mapping a delay of >40 ms be-
tween the stimulus and QRS onset is consistent
with slow conduction away from the pacing site. A
paced QRS that matches the VT with a long S-QRS
delay is consistent with pacing in a potential reen-
try circuit isthmus.23,61 If, however, an isthmus is
defined by functional block, that is only present
during VT, pace-mapping at these sites will likely
produce a different activation sequence and QRS
morphology than that of VT.

Pace-mapping can also detect some areas of
electrically unexcitable scar, defined by a high pac-
ing threshold that may form the border for a reentry
circuit isthmus. Within low voltage regions, Soe-
jima et al. defined electrical unexcitable scar (EUS)
based on a unipolar pacing threshold >10 mA at
2-ms pulse width in 14 patients with prior infarc-
tion. EUS formed at least one border of 20 VTs
reentry circuits identified by entrainment (n = 12)
or pace-mapping. Ablation across the delineated
isthmuses abolished all inducible VTs in 10 of 14
patients with marked reduction of spontaneous VT
(from a mean of 142 ± 360 to 0.9 ± 2.0 episodes
per month) during a follow-up of 168 ± 126 days.62

Fibrotic areas that form boundaries of conduct-
ing channels are likely to have lower amplitude
electrograms. Dense scar has been arbitrarily de-
fined as sites with a peak-to-peak bipolar elec-
trogram amplitude of <0.5 mV on voltage maps.
However, with the variation in number and size of
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Figure 5. (A) AP view of a epicardial electroanatomical voltage map (CARTO, Biosense Webster,
Inc.) in a patient with no detectable structural heart disease based on available image modalities
(such as Echo, MRI, LV and RV angiogram, and endocardial RV and LV voltage mapping) who
presented with a monomorphic VT. Bipolar electrogram amplitudes are color coded according
to the color bar. Normal voltage (amplitude: >1.5 mV) areas are displayed in purple. Epicardial
mapping revealed a large low voltage area consistent with scar and findings consistent with
scar-related macroreenty. The anterior small low voltage area that extends to the basis of the LV
perhaps indicates the location of the left anterior descending artery (LAD). The grey EUS areas
indicate electrical unexcitable scar (unipolar pacing with 10 mA and 2 ms impulse width). (B)
Modified AP view (tilted and shifted to a more rightward and inferior projection) of the epicardial
activation map during the clinical VT (CL 260 ms). Activation time is color-coded according to
the corresponding color bar. The activation map demonstrates a figure-of-eight pattern of the VT
with two wavefronts propagating around two areas of EUS. Linear RF lesion connecting these two
areas of EUS rendered the VT noninducible. (C) Twelve-lead ECG of the VT.

surviving bundles of myocytes that can form con-
ducting channels, as well as the proximity of larger
masses of surviving myocardium to channels,
the electrogram amplitude in these regions can
vary. Potential channels can be detected in some
patients by individual adjustment of the voltage
criterium for scar (Fig. 4). Arenal et al. systemati-
cally reduced the upper and lower voltage thresh-
old in bipolar voltage (BV) maps starting at 0.51
and 0.5 mV, respectively, to expose channels of
relatively greater amplitude between lower ampli-
tude regions. A total of 23 channels were identi-
fied in 20 of 26 patients, 20 of them were related
to at least one VT based on entrainment and pace-
mapping. The majority of these channels could be
defined by a scar definition of ≤0.2 mV. Detection
of complete channels that connect normal voltage
areas was more likely with a scar definition of ≤0.1
mV voltage and for patients with inferior MI. The
channels were 23 ± 11 mm in length and 9 ± 3
mm in width.

Ablation in these channels abolished 88% of
inducible VTs and 77% of patients remained free
of VT during an average follow-up of 17 months.63

Using electrogram amplitude alone is not suf-
ficient to identify some channels. Pacing at low
amplitude sites to assess capture provides com-

plimentary information to identify areas of dense
fibrosis that are electrically unexcitable.62 Soejima
et al. observed that some isthmuses have very low
amplitude electrograms (e.g., <0.5 mV) that would
be classified as “dense scar” by some criteria. The
average SR electrogram amplitude at isthmus sites
was 0.32 ± 0.16 mV, but ranged from 0.08 to 0.91
mV; and 24% of excitable sites in infarct scars,
where the pacing threshold was 10 mA or less,
had very low amplitude (<0.25 mV) electrograms.
Eight of 20 VT isthmuses would not have been evi-
dent using a definition of <0.25 mV for dense scar.

Potential channels and areas of slow conduc-
tion can also be detected from isolated late poten-
tials (IP), inscribed after the end of the QRS during
SR or right ventricular (RV) pacing (Fig. 4). Isolated
delayed potentials, separated by >50 ms by an iso-
electric interval or by very low amplitude signals,
were targeted by Arenal et al. in 18 patients with
unmappable VTs predominantly after MI. A mean
of 13 ± 8 RF lesions abolished all inducible VTs
in 13 of 18 patients (two patients were not tested
and three remained inducible for fast VT). During
a follow-up of 9 ± 4 months five patients expe-
rienced a VT recurrence.64 Of interest, RV pacing
increased the sensitivity for identifying late acti-
vated areas, demonstrating the effect of the direc-
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tion of the activation wavefront on conduction in
scar areas.

Studying patients with stable VTs, Bogun et al.
found that the pace-maps at sites with isolated SR
potentials (>20 ms separation) were more often
good or perfect matches for the VT QRS, consistent
with an exit region and that the S-QRS interval at
these sites was longer than at sites with only ab-
normal/fragmented electrogram. The combination
of these criteria was a good indicator of a critical
isthmus site.65

Integrating Substrate Mapping with VT Mapping
Substrate mapping can also be combined with

limited mapping during VT, allowing regions of in-
terest to be defined during stable SR. After induc-
ing VT, evaluation of VT electrograms and entrain-
ment, and potential ablation at the site during VT,
can be restricted to the predefined regions and may
be feasible even for poorly tolerated VT. Soeijima
et al. used SR voltage mapping, pace-mapping,
and limited entrainment mapping during VT to de-
fine a potential isthmus in 40 patients with stable
and unstable VTs. Inducible VTs were abolished
in 75% and modified in the remaining patients.
Less ablation with shorter RF lines (4.9 ± 2.4 vs
7.4 ± 4.4 cm) were required when an isthmus was
identified compared to guiding placement of abla-
tion lesions only by electrogram voltage and pace-
mapping.23 Kottkamp et al. achieved acute com-
plete success (completely noninducible) in 79% of
28 patients using a similar strategy.66 There were
no major complications in either series.

These studies of substrate mapping are en-
couraging; although relatively small, patients are
somewhat heterogeneous and different methods
have not been directly compared. An approach
that utilizes a variety of indicators of potential
reentry circuit locations is evolving.

The potential for long fluoroscopy times and
substantial radiation exposure to patients and
operators is also a concern with extensive sub-
strate modification approaches.24 Remote navi-
gation systems have been shown to allow sub-
strate mapping with minimal fluoroscopy.67 The
enhanced maneuverability of the catheter might
also facilitate mapping of difficult-to-reach areas.
The mapping time is still significant (e.g., 84 ± 44
min; 48 ± 18 seconds per point for the LV) and
the true usefulness of these systems will be better
defined as irrigated, and large tip catheters are in-
corporated into so that ablation can be performed
with the same system.

Intramural and Epicardial Circuits
Scar-related reentry circuits commonly ex-

tend deep to the endocardium, although a portion
is usually located on the endocardium. Absence
of an adequate target on the endocardium, where

catheter ablation can interrupt reentry, is a ma-
jor cause of ablation failure. Circuits located deep
within the septum accounted for 17% of VTs of pa-
tients who underwent endocardial and epicardial
mapping during surgery.68 Epicardial circuits are
common in nonischemic dilated cardiomyopathy
(DCM) and with inferior wall infarcts (see below).

Increasing Ablation Lesion Size
and Depth with Irrigation

Ablation of large reentry circuits that can ex-
tend deep to the endocardium is facilitated by
technologies that increase ablation lesion size.69

Active cooling of the ablation electrode with irri-
gation maintains a low electrode–tissue interface
temperature during RF application which prevents
coagulum formation and impedance rise, allowing
greater energy delivery.70 In animal models, irri-
gation increases RF lesion size by 30–50%.71 Two
different systems are available; a 4-mm tip inter-
nal saline irrigation (Chili, Boston Scientific, Inc.,
Natick, MA, USA) and a 3.5-mm tip externally ir-
rigated catheter (ThermoCool, Biosense Webster,
Inc., Diamond Bar, CA, USA). In animal models,
the external irrigation system provides greater sur-
face cooling with less risk of thrombus formation
and charring than the internally irrigated system.72

However, the external irrigation system adminis-
ters a volume load to the patient which can pre-
cipitate pulmonary edema if not considered and
managed.

Compared with standard RF, cooled RF is
more effective for terminating VT, particularly
at isthmus sites where an isolated potential was
present (89% vs 54% termination sites).69 Safety
and efficacy of the internally irrigated catheter has
been studied in a prospective multicenter trial of
patients with VT due to structural heart disease.73

Major complications occurred in 8%, including
death in 2.7%, which is comparable with compli-
cation rates (5–12%) reported in VT ablation with
standard catheters.17–20,74 Thromboembolic com-
plications and stroke occurred in 2.7% of patients.

Intracoronary Ethanol Ablation

Selective intracoronary alcohol injection in a
branch that likely supplies a critical part of the
reentry circuit has been effective in treating un-
controllable VTs in a small number of patients. An
adequate vessel cannot always be identified. The
presumed extend of the MI has to be weighed up
against the risk of surgery.75–77

Epicardial Mapping and Ablation

Percutaneous transthoracic epicardial
catheter mapping and ablation was introduced
by Sosa et al. for treatment of epicardial VTs,
initially in Chagas disease.78 Ablation catheters
can be introduced in the pericardial space by
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a subxiphoid pericardial puncture. If access to
the pericardial space is limited by adhesions
from prior pericarditis or cardiac surgery, a direct
surgical approach via a subxiphoid pericardial
window can allow epicardial mapping and
ablation.79 Approximately 15% of patients, with
recurrent VT late after MI, require epicardial
ablation. Epicardial reentry circuits seem to be
more common with inferior rather than anterior
wall infarctions and in patients with nonischemic
cardiomyopathy.68,80,81

Substrate and VT mapping approaches similar
to those described for the endocardium have been
employed, although some investigators have noted
greater difficulty in achieving reliable epicardial
capture for pace-mapping and entrainment map-
ping.82–84 Limitations of pacing for pace-mapping
and entrainment mapping in the epicardium may
be due to freedom of catheter movement in the
pericardial space, as well as the possible presence
of epicardial fat, which is concentrated along the
coronary sulcus and the interventricular grooves
(Fig. 5). During surgery d’Avila et al. observed that
more than 5 mm of epicardial fat produced a pac-
ing threshold exceeding 10 mA.85 Epicardial fat
may also attenuate lesion formation. In an animal
model standard, RF application over an epicardial
fat layer with an average thickness of 3.1 mm re-
sulted in no significant myocardial lesion, whereas
ablation with a closed-loop irrigated tip catheter
created lesions to a depth of 4.1 mm (45 ± 4.4
W).86 Cooled tip ablation is likely to be more ef-
fective than standard RF ablation in the absence
of convective electrode cooling in the pericardial
space. Epicardial fat seemed to have less of an ef-
fect on electrogram amplitude; however, available
data are inconsistent. In the animal model, BV
electrograms exceeded 1.5 mV despite the pres-
ence of epicardial fat (mean thickness of the fat
layer 2.6 ± 1.2 mm)86; therefore, voltage criteria
alone might not be sufficient to delineate areas of
epicardial fat.

Delineation of epicardial scar based on BV
mapping seems to be feasible, but may have limi-
tations due to the epicardial fat layer (Fig. 5). In a
porcine model, 95% of normal, epicardial electro-
grams were >1.4 mV (4-mm tip catheter, Navistar,
Biosense Webster, Inc.). In this study, sites with
electrogram amplitude lower than 1.4 mV were
concentrated near the base of the heart where epi-
cardial fat is more abundant. Scars from healed MI
corresponded well with bipolar electrogram am-
plitude <1.5 mV. Short electrogram durations of
less than 50 ms were indicative of normal my-
ocardium particularly at lower voltage sites near
the atrioventricular (AV) groove.87 However, low
voltage regions due to fat rather than scar were
demonstrated in a patient who underwent heart
transplantation.88

In 14 patients with stable VTs after inferior
MI, 39% (7/18) of all mappable VTs could be inter-
rupted by epicardial ablation. Epicardial entrain-
ment mapping was often difficult in this series
due to a high stimulation threshold. Empiric ther-
mal mapping (RF application for 10 sec to assess
VT termination) was applied after localization of
coronary arteries by coronary angiography. During
follow-up all epicardial ablated patients remained
asymptomatic.82 Schweikert et al. ablated 8 of 10
VTs from the epicardium in seven post-MI patients
and three DCM patients after unsuccessful endo-
cardial irrigated RF ablation. Transient pericarditis
occurred in three of 48 patients who underwent an
epicardial approach; there were no major compli-
cations.83 Brugada et al. found epicardial ablation
successful in 80% of patients with incessant VT in
whom endocardial ablation failed or was thwarted
by LV thrombus or difficult vascular access.84 Dur-
ing follow-up (18 ± 18 months), one patient expe-
rienced a VT recurrence.

Cesario et al. performed epicardial and en-
docardial mapping in eight patients (six MI, two
DCM) with unstable VT, previous failed endocar-
dial ablation, and a suspected infero-posterior scar
or an ECG suggestive for an epicardial VT origin.
Scar identified by voltage mapping was located in-
ferior or posterior in all patients (six MI, two DCM).
Voltage mapping (scar arbitrarily defined as <0.5
mV, borderzone defined as 0.5–1.5 mV) combined
with pace-mapping in the borderzone was used to
guide placement of extensive linear lesions (mean
RF time: 118 min, range: 65–202 min) connecting
scars or anatomical boundaries. After one year of
follow-up, 75% of patients were free of VT.88

Epicardial ablation is often required for VT
due to DCM. In 7 of 28 patients in whom endocar-
dial ablation failed, low amplitude areas consis-
tent with scar (<1.5 mV) were detected adjacent to
a valve annulus in the basal LV (5), RV (2), RV out-
flow tract (3) and also at the lateral LV (2). Average
epicardial low voltage scar area was larger than the
endocardial scar area (37.5 ± 10.4 cm2)89 which
is in contrast to 12 patients after MI who had an
endocardial low voltage area that was three times
greater than the epicardial low voltage area.88 Us-
ing unipolar pacing isthmuses could be identified
by entrainment or pace-mapping in six of seven pa-
tients. In three patients, slow conduction defined
as S-QRS >40 ms was related to low voltage areas
consistent with scar. Ablation was acutely success-
ful in five of seven patients. In two patients, RF was
limited due to the proximity of the phrenic nerve
or coronary artery; three of the seven patients had
recurrences during follow-up.

Complications of the epicardial approach in-
clude accidental right ventricular puncture with
hemopericardium in 7% and transient pericardi-
tis in 6% of patients.78,82,83 Use of intrapericardial
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glucocorticoids is under study for prevention of
pericarditis. Rare cases of intraabdominal bleed-
ing, likely due to inadvertent puncture of a sub-
diaphragmatic vessel, have occurred.90 Phrenic
nerve injury can probably be avoided by high out-
put pacing to detect proximity to the nerve before
RF delivery. A case of separating the nerve from
the epicardium using a balloon catheter inflated in
the pericardial space to overcome the limitation of
ablation sites close to the phrenic nerve has been
reported.91

Damaging epicardial coronary arteries during
RF application is of concern. In animal models,
standard RF application with a 4-mm tip electrode
<1 cm from a coronary artery causes fibrosis of
the media after 14 days, and can cause muscu-
lar hyperplasia and/or intravascular thrombosis.
There was no arterial injury when RF were de-
livered more than 1 cm distant to the epicardial
vessel. Larger vessels are less susceptible to injury
than small vessels, likely related to greater cooling
from blood flow.85 Ablation in infarct-related areas
is likely to involve territories of occluded infarct
arteries. Of 215 patients in one series, one suffered
MI from occlusion of a marginal artery.90 However,
the relevance of the possible media injury during
very long-term follow-up is unclear and warrants
continued investigation.

Cryoablation is an alternative to RF ablation
that is not limited by absence of cooling blood flow
in the pericardial space and is less prone to cause
coronary artery injury in animal models.92 Direct
freezing on the epicardial coronary arteries in dogs
can, however, cause neointima proliferation after
4–6 weeks, with a theoretical risk of late stenosis.93

Further studies in humans seem warranted.

Scar Related VTs in Specific Diseases
Most of the data discussed to this point is de-

rived from patients with prior MI. The methods for
mapping and ablation are also applicable to other
disease associated with scar related VTs.

Dilated Cardiomyopathy (DCM)

Only 14% of patients with DCM have grossly
visible scar at necropsy, but interstitial or replace-
ment fibrosis is present in the majority.94 In ex-
planted hearts, De Bakker et al. demonstrated
that the discontinuous and circuitous conduction
through zones of dense, patchy fibrosis produces
slow conduction and fractionated electrograms
and the substrate for reentrant VT.95 Evidence of
scar is often present in DCM patients undergoing
ablation for VT. Hsia et al. found low voltage (<1.8
mV) areas (mean: 41 ± 28 cm2) predominantly near
the ventricular base and the perivalvular region in
19 patients. Of 57 VTs, 88% had exit sites near
the basal regions. Ablation was acutely successful

in 14 of 19 patients; however, only five patients
were alive without VT recurrence after 22 ± 12
months.96

Kottkamp et al. reported eight patients with
hemodynamically stable VTs, half with incessant
VT. Ablation targeting fragmented, presystolic, or
middiastolic activity in six patients and pace-map
sites in two was acutely successful in six of nine
targeted VTs. In six patients, VTs other than the tar-
geted VTs were inducible after ablation and only
two remained free of VT during 8 ± 5 month
follow-up.97

Epicardial scar and reentry is often found
when endocardial ablation fails. Using combined
endocardial and epicardial approaches, Soejima
et al. reported that 54% of patients with myocar-
dial reentry due to DCM were free of VT during a
follow-up of 334 ± 280 days in one series.89

The reasons for high recurrence rates de-
spite good acute success are not completely clear;
disease progression may contribute. Assessment
of acute success may be hampered by unreli-
able reproducibility of VT induction in some pa-
tients.97,98 Moreover, deep intramural or subepi-
cardial circuits targeted from the endocardium
may be more likely to recur after healing of ab-
lation lesions.

Arrhythmogenic Right Ventricular
Dysplasia (ARVD)

ARVD is characterized by loss of right ven-
tricular myocytes with replacement of fibro-fatty
tissue beginning in the subepicardium and pro-
gressing to the subendocardium. Although pre-
dominantly located in the RV, the process can also
involve the left ventricle.99,100 These areas can be
identified by low unipolar and bipolar electrogram
amplitude using electroanatomical mapping tech-
niques.101–103 Low voltage areas are frequently lo-
calized adjacent to the lateral tricuspid annulus
(TA), the right ventricular outflow tract (RVOT),
and the apex which is in line with the anatom-
ical findings of the disease.102,104 Electrophysiol-
gic findings are usually consistent with reentry,
although focal patterns of activation have been de-
scribed.103

The macroreentrant reentrant circuits tend to
be clustered around the TA and the RVOT,103–107

whereas focal origin VT seemed to originating
more often from the RV free wall,103 perhaps rep-
resenting endocardial breakthrough of an epicar-
dial reentry circuit.108 Catheter ablation based on
entrainment mapping in stable VT was acutely
successful for eight of 19 VTs in five patients in
one series, failing in the VTs that originated from
the body of the RV.105

Satomi et al. aimed to identify the entire reen-
try circuit using an electroanatomical mapping
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system in 17 patients. In six of 13 mappable VTs,
the critical slow conduction area was located be-
tween scars (defined by BV<1.5 mV) or between
scar and TA. Abolishing these VTs sometimes re-
quires linear lesions most likely due to a broad
isthmus. Four VTs had a focal endocardial acti-
vation pattern, but could be entrained consistent
with reentry.104 Three VTs had multiple endocar-
dial exits suggesting an epicardial circuit with
multiple endocardial breakthrough sites.

Substrate mapping can be used to guide lin-
ear RF lesions in patients with otherwise unmap-
pable VTs. Verma et al. encircled abnormal regions
that showed good pace-maps or connected these
areas to anatomical boundaries or adjacent scar ar-
eas (defined as BV <0.5 mV) and achieved acute
success in 82% of 22 patients. There was one acute
pericardial tamponade requiring drainage.102 VT
recurred in 47% of patients after 3 years follow-
up.

In four reported series, overall recurrence dur-
ing average follow-ups ranging from 6 to 50 months
was 38% (range: 25–50%), perhaps due to the pro-
gressive disease.102–104,109 Although the RV wall
can be thin, ablation seems to require irrigated-
tip or 8-mm tip catheters or epicardial ablation in
some patients.102 Perforation and tamponade does
not appear to be markedly increased despite these
anatomic considerations.

Right Ventricular Cardiomyopathy

Marchlinski et al. reported on 21 patients with
VT due to cardiomyopathy involving the RV, but
with no family history of ARVD or SCD. Low volt-
age areas extending from the perivalvular regions
but sparing the apex were observed. After VT ab-
lation guided by activation and entrainment map-
ping in three patients with stable VTs and pace-
mapping and application of linear lesions during
SR in 16 patients with unmappable VTs, 17 of 19
patients were free of recurrent VT during 27 ± 22
months of follow-up.110

Although these patients would have largely
met task force criteria for ARVD, the nonfamilial
occurrence and the low recurrence rate suggest the
possibility of a nongenetic origin (e.g., postinflam-
matory) or alternatively a spontaneous mutation
with a different phenotype and perhaps less risk
for disease progression than those with recognized
familial ARVD. Long-term control of VT by abla-
tion in this patient group seems to be more likely.

Sarcoidosis

The anatomical feature of the disease is non-
caseating granulomas, but areas of active granulo-
matous inflammation can be replaced by fibrosis,
perhaps providing the substrate for reentrant VT.
Cardiac involvement can occur without other de-

tectable organ involvement.111 Of 98 patients with
nonischemic cardiomyopathy referred for catheter
ablation of monomorphic VT, eight (8%) had his-
tologically proven cardiac sarcoidosis. Low ampli-
tude regions were present in the RV in all and in
the LV in all six patients in whom LV mapping was
performed and in the epicardium in one of two pa-
tients who had epicardial mapping. Ablation tar-
geting 32 VTs abolished at least one inducible VT
in six patients; two patients had no inducible VT,
but six out of eight patients experienced a VT re-
currence during follow-up.

VT after Repair of Congenital Heart Disease

VT late after repair of congenital heart disease
are usually related to reentry involving scars asso-
ciated with ventricular incisions. Small series and
anecdotal cases of catheter ablation have been re-
ported for recurrent VT in patients with tetralogy
of Fallot, double outlet right ventricle, ventricu-
lar septal defect (VSD) repair, transposition of the
great arteries combined with VSD, and severe in-
fundibular pulmonary stenosis.112–114 Catheter ab-
lation guided by activation and entrainment map-
ping can be successful, but reported results are
variable in these small series with recurrence rates
up to 40% during 3.8 years of follow-up.114 Un-
stable VTs, noninducibility of VT, and complex
anatomy contribute to failures. Three-dimensional
electroanatomical mapping may facilitate abla-
tion.115–117

Bundle-Branch Reentry VT
Bundle-branch reentry VT is observed in 4.5–

6% of patients with VT associated with coro-
nary artery disease and in up to 16.7–41% of pa-
tients with monomorphic VT associated with var-
ious cardiomyopathies, myotonic dystrophy, and
valvular heart disease.118–120 It is possible that this
VT is under-recognized with the increasing prac-
tice of ICD implantation without electrophysio-
logic study.

Most commonly the macroreentry occurs with
propagation up the left bundle branch (LBB) and
antegrade down the right bundle branch (RBB),
giving rise to a left bundle branch block (LBBB)
pattern VT. Evidence of His-Purkinje disease is
usually present with interventricular conduction
delay or LBBB, and His-ventricular (HV) prolonga-
tion (average of 75.3 ± 13.2 ms) is usually present
but not required.121–123 During VT a stable His-
electrogram preceding each QRS and a HV-interval
longer, equal to or less than 10 ms shorter than the
HV-interval during SR, is typically seen. Oscilla-
tions of the interval between His or Right bundle
potential anticipating ventricular CL changes con-
firm participation of the bundle branches in the
tachycardia.122 Entrainment of the VT from the RV
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apex with a PPI-TCL of less than 30 ms is sugges-
tive for BBR-VT.124

Catheter ablation of the RBB is curative; how-
ever, other VTs that are scar-related are frequently
inducible and ICD implantation is often war-
ranted. Marked prolongation of the HV interval
>90 ms warrants pacemaker (or ICD) implantation
in 20–30% of patients. LBB ablation might have a
lower risk of AV block in some patients but may
be followed by LV dyssynchrony requiring imple-
mentation of biventricular pacing.

Beyond Myocardial Scar? Targeting
Triggers of Polymorphic VT

In 1994, Leenhardt et al. reported a “short cou-
pled variant of torsade de pointes (TdP)” in 14
patients with structural normal hearts.125 Subse-
quently, Haissaguerre et al. demonstrated in a sim-
ilar group of patients that the short coupled pre-
mature ventricular contractions (PVCs) could be
targeted for ablation to abolish recurrent episodes
of polymorphic VT and VF. In 23 of 27 patients,
the initiating beat was identical to preceding pre-
mature ventricular beats with a short CI of 280 ±
26 ms and often originating from the distal Purk-
inje system. In four patients, the premature beats
originated in the RVOT with a coupling interval
of 355 ± 30 ms. Ablation of these initiating PVC
foci eliminated recurrent VF during follow-up of
24 ± 28 months in 24 patients.126 Focal PVC trig-
gers can also play a role in Brugada Syndrome and
long QT syndrome and successful control of ar-
rhythmia storms by ablation has been reported.127

VF episodes tended to cluster in time with long
periods of quiescence, months or years later. Suc-
cessful mapping and ablation requires prompt per-
formance during a period of arrhythmia exacerba-
tion, and all patients should receive an ICD until
extensive long-term follow-up data are available.

The recognition that RV outflow tract PVCs
can trigger VF in some susceptible patients has
raised concern regarding the ability to distin-
guish benign from malignant RV outflow tract
arrhythmias.128

Benign RVOT PVC/VT seem to have a longer
CI (mean 0.44 ± 0.08; range: 0.32–0.6) than short
coupled RVOT VT (mean: 0.35 ± 0.02; range: 0.32–
0.40), which have been associated with malignant
polymorphic VT and idiopathic VF (mean: 0.3 ±
0.04; range: 0.22–0.44).129 In the largest reported
series, however, including 16 patients with poly-
morphic VT or VF originating from the RV outflow
tract, the frequency of isolated PVCs and their cou-
pling intervals were not different to those observed
in 85 patients with idiopathic monomorphic RV
tachycardia. Patients with VF or polymorphic VT
had more often a history of syncope (69% vs 18%)
and the CL of nonsustained VT on Holter monitor-

ing was significantly shorter (245 ± 28 ms vs 328 ±
65 ms). Ablation abolished all PVCs in 13 and the
targeted PVC in three patients with no recurrence
of VF during a follow-up of 54 ± 39 months.128

Acute MI complicated by recurrent polymor-
phic VT/VF despite betablocker, amiodarone and
in the absence of ongoing ischemia is rare, oc-
curring in only four out of 2340 acute infarc-
tions.130 These tachyarrhythmias may be triggered
by monomorphic PVCs, perhaps arising from Purk-
inje fibers close to the infarct borderzone. Target-
ing PVC sites of presystolic sharp potentials, con-
sistent with Purkinje origin abolished recurrent
VT in one small series of four patients. Recur-
rent polymorphic VT after infarction may have a
similar mechanism. Marrouche et al. reported on
29 patients with an ischemic cardiomyopathy af-
ter remote MI (>6 month) who experienced VF
storm initiated by monomorphic PVCs (CI: 195 ±
45 ms); eight who were refractory to medical treat-
ment underwent mapping and ablation. Purkinje-
like potentials (PLP) preceding the PVCs located
in the borderzone of the infarct were identified
in five patients; in the remaining three ablations
were guided by the presence of Purkinje-like po-
tentials during SR. Following ablation, VF storm
subsided in all patients; one had a recurrence of VF
during a follow-up of 10 ± 6 months.131 Ablation
targeting triggering PVCs that appeared to origi-
nate from the Purkinje system has also been suc-
cessful in controlling recurrent VT/VF in rare pa-
tients with cardiac amyloidosis132 and fulminant
myocarditis.133

Summary
VT ablation is an important palliative and

adjunctive therapy to ICD and medical therapy
for control of recurrent ventricular tachyarrhyth-
mias. Medical therapies that extend survival in
patients with depressed ventricular function, in-
cluding ICDs that reduce sudden death, are likely
to increase the need for this therapy. Most of these
patients have scar-related arrhythmias. Advances
in knowledge and technology of mapping and ab-
lation such as 3D-electroanatomical mapping, ir-
rigated tip catheter, and nonsurgical catheter ac-
cess to the epicardial space have improved acute
success rates and have extended the indication to
what were formerly labeled “unmappable” VTs,
such as those that are hemodynamically unstable,
as well as to VTs with a subepicardial substrate.

The recognition of triggers for polymorphic
VT and VF that can be targeted for ablation has
further advanced the catheter ablation frontier. Ab-
lation failure is often due to an anatomic problem;
such as an intramural or epicardial substrate, but
methods are evolving that are increasing success
with these challenges.
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